Abstract

A theoretical model is presented for analyzing the propagation of densely spaced WDM optical signals through a cascade of erbium-doped fiber amplifiers and single-mode optical fibers with nonuniform chromatic dispersion. By combining a numerical solution for the EDFA and an analytical expression for FWM components generated through the cascade, the model allows a realistic system analysis which includes gain peaking effect, amplified spontaneous emission accumulation and the effect of dispersion management on the four-wave mixing efficiency. The FWM power distribution at the end of the multi-amplifier transmission link is computed taking into account the phase relation between FWM light amplitudes generated within different sections of the link. The transmission of many WDM channels, evenly spaced around 1547.5 nm, has been analyzed for various dispersion management techniques and propagation distances. Numerical results point out the importance of such a model for a realistic design of WDM optical communication systems and networks. A proper choice of chromatic dispersion, amplifier characteristics, span length, input signal powers and wavelengths, combined with the use of gain equalizing filters, allows to maximize the transmission distance ensuring acceptable signal-to-noise ratio (SNR) and limited SNR variation among channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call