Abstract

Fluctuation in microscopic distribution of solute atoms will act as a barrier for glide motion (i.e. 1D migration) of interstitial clusters in random alloys. We proposed an analytical model in which the total interaction energy between an interstitial cluster and solute atoms is a superposition of the interaction potential between the cluster and individual solute atom. Then we examined the nature of fluctuation in the total interaction energy of a gliding cluster. The average amplitude of the fluctuation was directly proportional to the square root of both the solute concentration and the cluster radius . The distance separating local peaks in the fluctuation was virtually independent of and , but showed dependence only on the range of the interaction potential. We proposed a model for another fluctuation in the interaction energy because of solute–solute interaction that is effective at high . The models interpreted the results of the molecular statics simulations of the fluctuating interaction energy for interstitial clusters (7i, 61i and 217i) in dilute and concentrated Fe–Cu alloys with random solute distribution. We proposed that the fluctuation in the interaction energy is responsible for the short-range 1D migration that is observed in various alloys in electron irradiation experiments. The distance between local peaks would give the characteristic length of 1D migration in concentrated alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.