Abstract

The kinetic models of Fischer-Tropsch synthesis (FTS) product distribution can be classified into two major groups: hydrocarbon selectivity models and detailed Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic models. In this study the two approaches to FTS product distribution modeling are presented and compared using the experimental data obtained in a stirred tank slurry reactor with promoted iron catalyst over a wide range of process conditions. Positive deviations from the classical Anderson-Schulz-Flory distribution and an exponential decrease in olefin-to-paraffin ratio with carbon number are predicted by the inclusion of solubility-enhanced 1-olefin readsorption and/or chain length dependent 1-olefin desorption concepts. In general the agreement between the model predictions and experimental data was very good, and modeling approaches are discussed in terms of fit quality, physical meaningfulness and practical utility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.