Abstract
Modeling of dynamic processes of diffusion and filtration of liquids in porous media are discussed. The media are formed by a large number of blocks with low permeability, and separated by a connected system of faults with high permeability. The modeling is based on solving initial boundary value problems for parabolic equations of diffusion and filtration in porous media. The structure of the media leads to the dependence of the equations on a small parameter. Assertions on the solvability and regularity of such problems and the corresponding homogenized convolution problems are considered. The statements are actual for the numerical solution of this problem with guaranteed accuracy that is necessary to model the considered processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.