Abstract

The popularization of EVs (electric vehicles) has brought an increasingly heavy burden to the development of charging facilities. To meet the demand of rapid energy supply during the driving period, it is necessary to establish a fast charging station in public area. However, EVs arrive at the charging station randomly and connect to the distribution network for fast charging, it causes the grid power to fluctuate greatly and the peak-valley loads to alternate frequently, which is harmful to the stability of distribution network. In order to reduce the power fluctuation of random charging, the energy storage is used for fast charging stations. The queuing model is determined to demonstrate the load characteristics of fast charging station, and the state space of fast charging station system is described by Markov chain. After that the power of grid and energy storage is quantified as the number of charging pile, and each type of power is configured rationally to establish the random charging model of energy storage fast charging station. Finally, the economic benefit is analyzed according to the queuing theory to verify the feasibility of the model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call