Abstract

In this study the catalytic dehydrogenation of ethylbenzene to styrene was investigated in a simulated tubular sodalite membrane reactor. The high quality microporous sodalite membrane was synthesized by direct hydrothermal method and characterized by single gas permeation measurements. The performance of the prepared membrane showed high potential for application in a dehydrogenation membrane reactor (MR). The performance of the MR was evaluated using a pseudo-homogeneous model of the fixed bed that was developed in this purpose. The obtained results were evaluated in comparison with corresponding predictions for a plug flow reactor (PFR) operated at the same conditions. The modeling results confirmed the high performance of a MR over a conventional PFR. Ethylbenzene conversion and styrene yield increased about 3.45% and 8.99% respectively which is attributed to the effect of hydrogen removal from reaction side. The results demonstrate that the styrene yield in the MR is predicted to be more effective than that of in the conventional PFR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call