Abstract
A plane wave model with nonuniform temperature distribution in the thin-disk crystal is developed to describe the dynamic behavior of an end-pumped Yb:YAG thin-disk laser. A set of couple-rate equations and 2D stationary heat-conduction equations are derived. The stable temperature distribution in the disk crystal is calculated using a numerical iterative method. The analytic expression is capable of dealing with more practical laser systems than previous works on this subject as it allows for nonuniform temperature distribution in the disk crystal. Based on these results, we examined laser output intensity as a function of pump intensity, dopant concentration, resonator coupler reflectivity, crystal thickness and temperature of cooling liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Optics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.