Abstract

Carbon nanotubes play a significant role in facilitating and controlling the transportation of drugs and biomolecules through their internal and external surfaces. Carbon nanotubes are also selective nano-devices because of their outstanding properties and huge potential use in many bio-medical and drug delivery applications. The proposed model aims to investigate the encapsulation of Alanine molecule inside a single-walled carbon nanotube, and to determine the minimum energy arising from the Alanine interacting with single-walled carbon nanotubes with variant radius r. We consider two possible structures as models of Alanine amino acid which are a spherical shell and discrete configuration modelled as comprising three components: the linear molecule, cylindrical group and CH3 molecule as a sphere, all interacting with infinite cylindrical single-walled carbon nanotube. The adsorption of Alanine amino acid and magnitude of total energy for each orientation calculated based on the nanotube radius r and the orientation angle φ which the amino acid makes with central axis of the cylindrical nanotube. Our results indicate that the Alanine molecule encapsulated inside the nanotubes of radius greater than 3.75 A, which is in excellent agreement with recent findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.