Abstract

We discuss the numerical modeling of logging-while-drilling (LWD) tools for hydrocarbon exploration in arbitrary three-dimensional geometries using a new finite-difference time-domain (FDTD) scheme in cylindrical coordinates. Two locally conformal FDTD (LC-FDTD) schemes are employed to simulate eccentric LWD tools in realistic logging environments. An anisotropic perfectly matched layer absorbing boundary condition extended to cylindrical coordinates is incorporated in the FDTD method to simulate unbounded geophysical formations. Frequency-domain data are obtained from the time-domain results using a ramp-modulated sinusoidal source and an efficient early-time extraction algorithm. The FDTD simulations are validated against both numerical mode matching and pseudoanalytical approaches and show very good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.