Abstract

We have investigated the hole transport in smectic mesophases by Monte Carlo simulation based on a 2D hopping transport in Gaussian-distributed density of states and time-of-flight experiments. We found that their unique carrier transport properties such as non-Poole-Frenkel type of behavior i.e., field-and-temperature independent mobility, is well explained by the 2D disorder model with a small Gaussian width of 50-60 meV. Furthermore, we found the Pool-Frenkel type of behavior in a biphenyl derivatives and at a low temperaure range below ambient temperature in a therthiphene derviative and determined the Gaussian width to be 100-120meV and 50 meV, respectively. We came to a conclusion that the charge carrier transport in smectic mesophases can be explained by a 2D disorder model with a small Gaussian width of the density of states σ, where a value of σ/kT plays important role to determien its behavior at a given temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.