Abstract

There is not a simple model for predicting the electrical conductivity of carbon nanofiber (CNF)–polymer composites. In this manuscript, a model is proposed to predict the conductivity of CNF-filled composites. The developed model assumes the roles of CNF volume fraction, CNF dimensions, percolation onset, interphase thickness, CNF waviness, tunneling length among nanoparticles, and the fraction of the networked CNF. The outputs of the developed model correctly agree with the experimentally measured conductivity of several samples. Additionally, parametric analyses confirm the acceptable impacts of main factors on the conductivity of composites. A higher conductivity is achieved by smaller waviness and lower radius of CNFs, lower percolation onset, less tunnel distance, and higher levels of interphase depth and fraction of percolated CNFs in the nanocomposite. The maximum conductivity is obtained at 2.37 S/m by the highest volume fraction and length of CNFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.