Abstract

AbstractThe dynamic mechanical properties of a vulcanized fluoroelastomer (FKM) were studied over a range of temperatures and shear frequencies. Dynamic mechanical analysis and differential scanning calorimetry were used for the purpose of the study. A model was developed in order to describe FKM's viscoelastic behavior at various temperatures. The model was fitted to experimental data using an algorithm, which was developed for this purpose. As a result the FKM discrete relaxation spectrum at two reference temperatures was obtained, as well as the Williams‐Landel‐Ferry (WLF) equation parameters or the activation energy equivalent. Further on, the model was applied on storage modulus and loss tangent values obtained from the experiments, during which the temperature increased linearly. It was observed that the WLF equation fits well with the results during the glass transition, while the Arrhenius‐type relationship predicted too rapid decrease of the storage modulus during the glass transition. The master curves were constructed using the previously calculated WLF parameters and the activation energy equivalent. The developed model may be readily applied for the prediction of the numerous FKM compounds' frequency–temperature behavior using the dynamic mechanical properties obtained from either isothermal or low linear heating rate program measurements. POLYM. ENG. SCI., 47:2085–2094, 2007. © 2007 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.