Abstract

Our newly developed our original multi-scale simulator was applied to dye-sensitized solar cells (DSSC) to investigate the effect of the complex porous structure of a TiO2 electrode on cell performance. We simulated the current–voltage (I–V) characteristics for various models of porous structures of DSSCs including cis-di(thiocyanato)-bis(2,2'-bipyridyl-4,4'-dicarboxylic acid)-ruthenium(II) (N3 dye). The short-circuit current density increased with decreasing porosity, overlap ratio, and particle diameter. A DSSC system including TA–St–CA (C30H22N2O2) as a sensitizer was also investigated for comparison with the system with N3 dye. The dependence of the amount of dye adsorption on the I–V characteristics was evaluated. A linear relation between the short-circuit current density and the amount of dye adsorption was found. The obtained results indicate that our developed multi-scale simulator is a powerful tool for obtaining insights into the effect of properties in DSSCs and for optimizing the DSSC structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.