Abstract
Rice-duck integrated farming is an effective step under today’s sustainable development background. To make better economic and ecological benefits, a rice-duck agroecosystem is established and kept, in which the paddy field, rice, and the duck mutually promote one another. But the duck density and complex stocking time must be rationally selected. Aiming to attain quantitative assessment and optimal selection of the duck density and complex stocking time in this kind of systems, a methodology based on proposed mathematical models in terms of comparative economic and ecological benefits is addressed. Then the models are solved by a hybrid intelligent algorithmNN-GAthat integrates the Neural Networks (NN) and Genetic Algorithm (GA), making use of the fitting ability in nonlinear fitness context of Neural Networks and the optimization ability of the Genetic Algorithm. Besides, numerical examples are demonstrated in order to test the proposed models. Results reveal that the methodology is reasonable and feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.