Abstract

We present a director-based model of the dual frequency nature of liquid crystals based on a Debye-type relaxation of the permittivity in the direction parallel to the director. This relaxation is governed by a first order differential equation in terms of the polarization and electric field along the long axis. We demonstrate that this equation can be used as an extension to the well-known Eriksen-Leslie-Parodi theory. Since solution is in the time domain, the frequency response of the applied waveform need not be calculated. Consequently, the device response to arbitrary applied waveforms can be modeled. As an example, we present the switching response of a dual frequency addressed hybrid-aligned nematic cell, and suggest some optimization of the addressing scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call