Abstract
Virtual life testing is becoming a widely accepted methodology for predicting the life span of products. In this method, reliable models are important to predict different aspects of design performance, one of which is wear. Wear and has been a subject of numerous scientific and empirical investigations. Due to the complex and dynamic nature of the phenomena, there is no general wear model, which can be adopted for all wear problems. A systematic approach to the modelling of dry sliding wear using analytical time domain models is presented in this paper. Given the sliding distance, the model is capable of predicting wear status in transient (running-in) and steady-state operating conditions. The validity of the modelling approach is demonstrated by comparing the predicted results of wear experiments, with that actually measured. For simplicity, the model is based on sliding distance as input variable, while other factors like temperature, load, surface conditions are treated as constant. A simple geometry of sliding polymer-based contacts is used for establishing of wear model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.