Abstract
AbstractIn droplet separation by granular bed filters, the transient loading regime plays an important role because, for gases with low droplet concentrations, steady state will be reached only after a long time. A mathematical model describing this transient loading regime as well as steady state was developed. It is based on differential balances for the dispersed droplets and for the separated liquid. The time‐dependent and spatially resolved liquid loading is calculated and compared with data obtained by magnetic resonance imaging (MRI), a noninvasive measuring technique. The good agreement between simulated and measured loading curves proves the general applicability of the model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.