Abstract

The ridge waveguide is useful in various microwave applications because it can be operated at a lower frequency and has lower impedance and a wider mode separation than a simple rectangular waveguide. An accurate model is essential for the analysis and design of ridge waveguide that can be obtained using electromagnetic simulations. However, the electromagnetic simulation is expensive for its high computational cost. Therefore, artificial neural networks (ANNs) become very useful especially when several model evaluations are required during design and optimization. Recently, ANNs have been used for solving a wide variety of radio frequency (RF) and microwave computer-aided design (CAD) problems. Analysis and design of a double ridge waveguide has been presented in this paper using ANN forward and inverse models. For the analysis, a simple ANN forward model is used where the inputs are geometrical parameters and the outputs are electrical parameters. For the design of RF and microwave components, an inverse model is used where the inputs are electrical parameters and the outputs are geometrical parameters. This paper also presents a comparison of the direct inverse model and the proposed inverse model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call