Abstract

Ion implant annealing is a complicated process involving the interactions of point defects generated during the implantation, implanted or previously present dopants, and extended defects which form as a result of the implant damage. To effectively model the process, it is essential to determine the critical processes, assess the validity of assumptions and calculate appropriate parameter values. In addition, implant annealing is just one element in the VLSI fabrication process, and the model development must consider the process as part of the broad range of experimental observations, as it is only through consistent physical models that simulators can predict the multiple interactions and two and three-dimensional effects present in VLSI structures. This work focuses on enhanced diffusion following silicon implants below the amorphization threshold as a function of dose, energy and time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.