Abstract
The description of protein disordered states is important for understanding protein folding mechanisms and their functions. In this short review, we briefly describe a simulation approach to modeling protein interactions, which involve disordered peptide partners or intrinsically disordered protein regions, and unfolded states of globular proteins. It is based on the CABS coarse-grained protein model that uses a Monte Carlo (MC) sampling scheme and a knowledge-based statistical force field. We review several case studies showing that description of protein disordered states resulting from CABS simulations is consistent with experimental data. The case studies comprise investigations of protein–peptide binding and protein folding processes. The CABS model has been recently made available as the simulation engine of multiscale modeling tools enabling studies of protein–peptide docking and protein flexibility. Those tools offer customization of the modeling process, driving the conformational search using distance restraints, reconstruction of selected models to all-atom resolution, and simulation of large protein systems in a reasonable computational time. Therefore, CABS can be combined in integrative modeling pipelines incorporating experimental data and other modeling tools of various resolution.
Highlights
There is a growing body of evidence that some proteins act in multiple structural states [1]
The CABS model uses a knowledge-based statistical force field that consists of generic, sequence-independent interaction terms that favor protein-like conformations, and sequencedependent interaction terms that determine some structural details [11,28,78]
The presented case studies review the applications of the CABS model in simulations of disordered or unfolded protein states
Summary
There is a growing body of evidence that some proteins act in multiple structural states [1]. Attempts focused on straightforward pairwise contacts [37]; with further development, more complex observables were analyzed This resulted in a generation of knowledge-based force fields, or scores, for various representations, coarse-grained and all-atom: CABS [28], Rosetta [38], DOPE [39], GOAP [40], QUARK [41], Bcl::Score [42] or BACH [36]. The combination of knowledge-based force fields or scores with effective sampling schemes seems to be a promising approach to a number of problems [11], such as protein structure prediction [43,44,46,47], investigation of protein interactions [48] or studies of protein dynamics [17,49,50,51]. Representative case studies will be discussed to provide detailed insights into the modeling results obtained for systems characterized by a varying level of disorder
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.