Abstract

AbstractIn the present study, we propose a novel approach for the realization of protein‐based logic circuits potentially suitable for nanoscale digital signal processing and computing architectures. Electric field‐induced switching of Dronpa, an artificial protein, is demonstrated through simulations with the NAMD molecular dynamics simulation software, and a circuit model that describes such switching behavior is presented. Simulations suggest that digital signal propagation and the majority gate can be realized by the utilization of such proteins if they are dipole–dipole coupled and are driven by proper electric fields. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.