Abstract

Fingertip-type pulse oximeters are popular, but their inconvenience for long-term monitoring in daily life means that other types of wearable pulse oximeters, such as reflectance pulse oximeters, need to be developed. For the purpose of developing reflection pulse oximetry, we have analyzed the light propagation in tissue to calculate and estimate the measured intensities of reflected light using the analytical and numerical solutions of the diffusion approximation equation. The reflectance of light from the biological tissue is investigated from theoretical and experimental perspectives, for light in the visible and near-infrared wavelengths. To establish the model, the calculated curves were compared with the analytical solution (AS) of the diffusion approximation equation in biological tissue. The results validated that the diffusion approximation equation could resolve the heterogeneous advanced tissue and the finite element method (FEM) could offer the simulation with higher efficiency and accuracy. Our aim has been to demonstrate the power of the FEM and AS in modeling of the steady-state diffusion approximation in a heterogeneous medium. Also, experimental data and the Monte Carlo model as a gold standard were used to verify the effectiveness of these methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call