Abstract

Modeling is a valuable help to optimize the setting and control of Diesel particulate filter (DPF) regeneration, given the complex phenomena involved. Among those, the fuel-borne catalyst action must be taken into account, because of its prevailing effect on the soot ignition and the regeneration propagation. This paper describes how a 1D model was developed at IFP, in a collaboration with PSA, which simulates the soot heating, ignition and oxidation along the wall-flow filter. The aim is to predict the regeneration of one filter channel, knowing the exhaust gases flow, temperature and oxygen content, and the way the filter was loaded with soot. The reaction mechanism and kinetics were experimentally studied and involve the additive action. Engine bench tests were conducted to highlight the effects of additive content, as well as the regeneration sensitivity to its main parameters (exhaust gases and soot features). Among others, it was found that additivated soot tend to pack down in the bottom of the inlet channels, thus modifying the regeneration progress, and that ignition temperature varies with the soot type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.