Abstract

Wood composite panels are widely used in construction and furniture industries. They are very much preferred in interior and exterior decoration, house hold products and toys, etc. because of the aesthetic appearance and their high-quality properties. In manufacturing of wood composite products various machining process are used. In final assembly of various parts of a end product, drilling is the most commonly used machining operation. The cutting forces developed during drilling process having more effect on the surface quality of the drilled holes. Hence the drilling damages like delamination must be controlled to ensure the surface quality of the final product. In controlling these forces the contribution of input drilling parameters is more. The objective of this work is to study the influence of input control parameters to obtain the optimal cutting conditions. In the present study the drilling experiments are performed using Taguchi design of experiments with Taguchi L27 orthogonal array on particleboard (PB) composite panels using high speed steel (HSS) twist drills with three different drill diameters. Response surface methodology (RSM) is used to develop a mathematical model to predict the influence of input control parameters on delamination. The adequacy of the model is checked using Analysis of variance. It is revealed that high spindle speed with low feed rate and smaller drill diameter combination gives better results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.