Abstract

An incremental approach to solving the antiplane problem for bimaterial media with a thin, physically nonlinear inclusion placed on the materials interface is discussed. Using the jump functions method and the coupling problem of boundary values of the analytical functions method we reduce the problem to the system of singular integral equations (SSIE) on jump functions with variable coefficients allowing us to describe any quasi-static loads (monotonous or not) and their influence on the stress-strain state in the bulk. To solve the SSIE problem, an iterative analytical-numerical method is offered for various non-linear deformation models. Numerical calculations are carried out for different values of non-linearity characteristic parameters for the inclusion material. Their parameters are analyzed for a deformed body under a load of a balanced concentrated force system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.