Abstract

Induced magnetic fields in the Earth arise due to two phenomena: induction generated by the time-variable exciting field and the motional induction caused by movement of the conductive planet in the outer magnetic fields. The comparison of both approaches on the spherical Earth has been analyzed in the present work for two sources in the ionosphere and magnetosphere. For this aim, both sources with their natural sizes and positions have been modeled analytically to obtain the fields on the layered sphere at the middle latitudes. The conditions when the steady ring current field is not influenced by the Earth’s rotation have been established theoretically. The synthetic diurnal magnetograms were used for the deep sounding by the magnetovariation spatial gradient method and the result was compared with the one obtained on the nonrotating sphere. Sounding results using both approaches were found different above the 2D inhomogeneous mantle. The precessions of the magnetospheric belt current pole for daily sampling frequency were presented using several geomagnetic observatory data in the northern hemisphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.