Abstract

The physics-based BTI Analysis Tool (BAT) is used to model the time kinetics of threshold voltage shift (ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) during and after NBTI in p-channel planar bulk and FDSOI MOSFETs and SOI FinFETs. BAT uses uncorrelated contributions from the trap generation at the channel/gate insulator interface (ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IT</sub> ) and gate insulator bulk (ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OT</sub> ), and hole trapping in pre-existing gate insulator bulk traps (ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">HT</sub> ). The ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IT</sub> kinetics is simulated by the Reaction-Diffusion (RD) model. The empirical ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">HT</sub> model used earlier is now substituted by the Activated Barrier Double Well Thermionic (ABDWT) model. The ABDWT model is also used to verify the time constant of the electron capture induced fast ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">IT</sub> recovery. Empirical equations are used for ΔV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OT</sub> . The enhanced BAT modeling framework is validated using measured data from a wide range of experimental conditions and across different device architectures and gate insulator processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call