Abstract

The stacking of waste rubber tires has led to serious environmental pollution. As an attempt to reduce pollution, rubber tires have recently been ground into rubber particles and incorporated into the geopolymer concrete to enhance the damping characteristics of concrete. Thus, we designed this study to quantify the effect of rubber particles on improving the damping performance of geopolymer concrete. The free vibration simulation of a rubber geopolymer concrete cantilever beam at four different rubber replacement volume fractions under five different damage displacements was performed on the ABAQUS platform. The damping loss factor, energy consumption, and modal shape of the cantilever beams under different damage displacements, as well as different rubber replacement volume fractions, were analyzed. The results showed that rubber particles significantly enhanced the damping characteristics of geopolymer concrete, and a certain amount of rubber particles could enhance the total energy consumption of concrete. The damping loss factor of geopolymer concrete was not closely related to its modal shape but mainly related to damage displacement and rubber particle replacement volume fraction. Altogether, these findings provide some technical references for the vibration resistance design of rubber geopolymer concrete.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call