Abstract

Subsynchronous resonance (SSR) is among the most severe instability conditions that may happen when grid-tied inverter-based renewable energy sources (RESs), like wind power, connect to a weak transmission grid. The potential impact of SSR includes loss of wind power generation, physical equipment damage, or instability that could spread to a larger area. Such risks make the subsynchronous stability of permanent magnet synchronous generator (PMSG) based wind farms a potential target for adversaries. To this end, this paper investigates and models two new cyber attack schemes targeting SSR in PMSG-based wind farms, which have high energy output and less maintenance. Considering the major causes and different damping controls for SSR in PMSG-based wind farms, this paper demonstrates the feasibility of the threat from the two proposed cyber attacks and compares them using the IEEE 9-bus benchmark. The results show that smartly craft cyber attacks can successfully degrade SSR damping, trigger an SSR, and even destabilize the power grid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.