Abstract

Knowledge of the behavior and magnitude of cutting forces is very important for correctly calculating cutting power and for obtaining tight tolerances and low levels of tool wear. In this way, the appropriate prediction of the force components collaborates with the correct choice of the cutting parameters and strategies. High oscillation of force values in helical milling increase the relevance of the analysis. In this context, present work describes an approach for modeling cutting forces in helical milling based on the analysis of tool contact angle and the respective depths of cut. From the model, it is possible to predict the behavior and magnitude of the force acting on the insert, which contributes to better process planning. The results indicated a good fit of the experimental values with the models, despite the observation of some errors, which occurred mainly due to the dynamics of the machine and the used approximations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call