Abstract

An analytical model of the silicon on insulator photoactivated modulator (SOI-PAM) device is presented in order to describe the concept of this novel device in which the information is electronic while the modulation command is optical. The model, relying on the classic Shockley’s analysis, is simple and useful for analyzing and synthesizing the voltage-current relations of the device at low drain voltage. Analytical expressions were derived for the output current as function of the input drain and gate voltages with a parameterization of the physical values such as the doping concentrations, channel and oxide thicknesses, and the optical control energy. A prototype SOI-PAM device having an area of 4 μm × 3 μm with known parameters is used to experimentally validate and support the model. Finally, the model allows the understanding of the physical mechanisms inside the device for both dark and under illumination conditions, and it will be used to optimize and to find the performance limits of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.