Abstract

Deviation of threshold voltage and effective mobility due to random dopant fluctuation is proposed. An improved 65 nm average drain current MOS model called α law is utilized after fitting HSPICE simulating data and extracting process parameters. Then, a current mismatch model of nanoscale MOSFETs induced by random dopant fluctuation is presented based on propagation of variation theory. In test conditions, the calculated standard deviation applying this model, compared to 100 times Monte-Carlo simulation data with HSPICE, indicates that the average relative error and relative standard deviation is 0.24% and 0.22%, respectively. The results show that this mismatch model is effective to illustrate the physical mechanism, as well as being simple and accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.