Abstract
The promise of cross-disciplinary scientific collaboration has recently been proven by both technological innovation and scientific research. Much effort has been spent on research collaboration recommendation. A remaining challenge is to make valuable recommendation to specific researchers in specific fields in order to obtain more fruitful cross-disciplinary collaboration. Cross-disciplinary information hides in big data and the relationships between different fields are complicated, complex, and subtle. This paper proposes a method for cross-disciplinary collaboration recommendation (CDCR) to analyze cross-disciplinary collaboration patterns in scholarly big data, and recommend valuable research fields for possible cross-disciplinary collaboration. A cross-disciplinary discovery algorithm based on topic modeling is designed to extract potential research fields. Collaboration patterns are examined by analyzing the research field correlations. A recommendation algorithm is developed to provide a specific recommendation list of potential research fields according to the discovered cross-disciplinary collaboration patterns with researchers’ profiles. Evaluations conducted based on a real scholarly dataset demonstrate the effectiveness of the proposed method in recommending potentially valuable collaborations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.