Abstract

Crack extensions in arc-shaped specimens of hydrogen-charged and as-received conventionally forged (CF) 21-6-9 austenitic stainless steels are investigated by two-dimensional finite element analyses with the cohesive zone model. The material constitutive relation is first obtained from fitting the experimental tensile stress-strain data by conducting an axisymmetric finite element analysis of a round bar tensile specimen of the as-received CF steel. The material constitutive relation for the hydrogen-charged CF steel is estimated based on the experimental tensile stress-strain data of the as-received CF steel and the hydrogen-charged high-energy-rate-forged (HERF) 21-6-9 stainless steel. The cohesive zone model with the exponential traction-separation law is then adopted to simulate crack extensions in arc-shaped specimens of the hydrogen-charged and as-received CF steels. The cohesive strength of the cohesive zone model is calibrated to match the experimental load-displacement curve with the cohesive energy determined by the J-integral at the maximum load of the arc-shaped specimen. The computational results showed that the numerical predictions of the load-displacement and crack extension-displacement curves for the hydrogen-charged and as-received CF steel specimens are compared reasonably well with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.