Abstract

This study investigated a mass-transfer process of the removal of SO2 from simulated flue gas by corona discharge combined with Mn2+ catalysis in wet reactor, including gas migration, liquid phase diffusion, and chemical reaction. The novelty formula of desulphurization efficiency and the flow rate of flue gas, discharge voltage, reaction enhancement factor, and the flow rate of water were established. It is reported that desulphurization efficiency remarkably increased with the increasing of enhancement factor and discharge voltage at 4000mgm−3 of SO2 and 0.05m3s−1 of gas flow rate. However, the desulphurization efficiency had a slightly increase with the increasing of water flow rate. It is realizable that the energy consumption could be reduced to be lower than 0.3kJm−3, which was acceptable for industrial application. The experimental data were well in accord with the calculated results of theoretical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.