Abstract
In this paper, a couple thermal mechanical transient dynamic finite element framework of copper wire bonding process on high power lighting emitting diodes (LEDs) is developed, which considers the thermal heating effects of friction and plastic deformation. The whole wire bonding process is simplified to consist of impact and ultrasonic vibration stages. Parametric studies are also carried out to examine the effects of ultrasonic vibration amplitude and bonding force on stress/strain distribution and friction thermal heating effect during wire bonding process. Different friction coefficients of interface between the free air ball (FAB) and the bond pad are taken in the simulation to examine the effects of friction on the stress and strain level of electrode structure. Modeling results show that the stress/strain distribution and temperature evolution of wire bonding system are significant influenced by the ultrasonic vibration amplitudes, bonding forces and friction coefficients. Discussion and comparison are conducted between the copper and the gold wire bonding processes on the high power LEDs by numerical simulation. The results have disclosed that higher stress/strain in the bond pad and the ohmic contact layer is induced during the copper wire bonding process. Therefore, the process parameters of copper wire bonding should be controlled carefully. This numerical simulation work may provide guidelines for the copper wire bonding process virtual window development of high power LEDs packaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.