Abstract

A mathematical model for transient contaminant transport resulting from the dissolution of a single component nonaqueous phase liquid (NAPL) pool in two-dimensional, saturated, homogeneous porous media was developed. An analytical solution was derived for a semi-infinite medium under local equilibrium conditions accounting for solvent decay. The solution was obtained by taking Laplace transforms to the equations with respect to time and Fourier transforms with respect to the longitudinal spatial coordinate. The analytical solution is given in terms of a single integral which is easily determined by numerical integration techniques. The model is applicable to both denser and lighter than water NAPL pools. The model successfully simulated responses of a 1,1,2-trichloroethane (TCA) pool at the bottom of a two-dimensional porous medium under controlled laboratory conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.