Abstract
In the rainfall-runoff process, interaction between surface and subsurface flow components plays an important role, especially in rainwater abstraction and overland flow initiation at the early stage of rainfall events. Coupling of surface and subsurface flow submodels, therefore, is necessary for advanced comprehensive and sophisticated rainfall-runoff simulation. This article presents a conjunctive two-dimensional (2D) surface and three-dimensional (3D) subsurface flow model, which uses the noninertia approximation of the Saint-Venant equations for 2D unsteady surface flow and a modified version of the Richards equation for 3D unsteady unsaturated and saturated subsurface flows. The equations are written in the form of 2D and 3D heat diffusion equations, respectively, and solved numerically. The surface and subsurface flow components are coupled interactively using the common boundary condition of infiltration through the ground surface. The conjunctive model is verified with Smith and Woolhiser’s exper...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.