Abstract

In a distributed system that implements real-time control, computational tasks are distributed over different nodes for execution to improve response time and system reliability. To model system behavior, tasks in each node are first decomposed into activities. The activities and precedence constraints among them are then modeled by a generalized stochastic Petri net (GSPN). Finally, a sequence of homogeneous continuous-time Markov chains (CTMC's) is built from the GSPN to model the concurrent task execution in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.