Abstract

A number of mechanical micropumps have been proposed, many of those have been designed using plane diaphragms. Diaphragm is the essential part in mechanical type of micropump. Performance of the diaphragm can be improved by varying diaphragm geometry; use of compliant flexure in the diaphragm will improve the diaphragm deflection. In this paper, we present a FE analysis of stainless steel flexure diaphragm with different number of rectangular flexures using ANSYS. Simulations have been performed and results obtained for different flexure diaphragm from the Finite element modeling (FEM) compared with the plane diaphragm to decide the better diaphragm for piezoelectric mechanical type micropump. The central deflection is studied for driving voltage of 90-120V. Single layer PVDF actuator of 52µm thickness is considered for simulation. The great advantage of using compliant flexure in micropump diaphragm is that it can achieve higher deflection at a low driving voltage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.