Abstract
A swelling-dependent two-fluid model (STFM) is developed for the liquid-solid flows of swelling particles in polyethylene reactors. The model integrates the two-fluid model (TFM) with a species transport equation (STE) to account for the diffusion of alkane molecules from the liquid bulk to the amorphous region of particles, and a population balance equation (PBE) to consider the aggregation of swelling particles. Simulations show that only the TFM fails to capture the main features of swelling systems. By contrast, the STFM captures the gradual increase of power consumption due to particle swelling and aggregation, which agrees with the experiments in a stirred tank. The STFM predicts also the slug formation and a sharp increase of power consumption in a slurry loop reactor as well as the solid accumulation behind pump. The difference of model prediction for stirred tanks and loop reactors suggests the potential of reactor optimization by enhancing local mixing while still keeping high solid concentration for productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.