Abstract

This paper presents the numerical modeling of complex flows and heat transfer. The Finite Analytic method is used to discretize the transport equations. The diagonal Cartesian method is proposed to model fluid flows and heat transfer over complex geometries. A three-dimensional channel flow with conjugate heat transfer is simulated. By the diagonal Cartesian method and 5-point Finite Analytic scheme, a grooved channel flow and flow in a casting bank at different Reynolds numbers are modeled. Simulations by both the diagonal Cartesian method and the traditional saw-tooth Cartesian method indicates the diagonal Cartesian method improves the modeling of flows, due to the more accurate approximation of complex boundaries. Heat transfer in two-dimensional finned compact heat exchanger is also studied. An improved heat exchanger is proposed based on the numerical prediction of heat transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.