Abstract

Physical evolution of Jupiter family (JF) comets is considered as a simultaneous process of erosion and fading. Dynamical effects are limited to discrete changes of the perihelion distance, that result in changes of the evaporation rate. Assuming that the JF comet population is in a steady state, a distribution function of this population in the two dimensional phase space consisting of radius and active fraction of the nucleus surface is found as the solution of a set of kinetic equations, each one of them for a different perihelion distance. With use of the distribution function some statistical properties of the comet population, like the total number of comets in the considered region of the phase space, the number of objects that evaporate or get dormant per unit time, etc., are obtained. The cumulative distribution function with respect to the absolute brightness is calculated and compared with the observed one as a check on the considered models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call