Abstract

In this paper, an adaptive finite element procedure is presented in modeling of mixed-mode cohesive crack propagation via the modified superconvergent path recovery technique. The adaptive mesh refinement is performed based on the Zienkiewicz–Zhu error estimator. The weighted-SPR recovery technique is employed to improve the accuracy of error estimation. The Espinosa–Zavattieri bilinear cohesive zone model is applied to implement the traction-separation law. It is worth mentioning that no previous information is necessary for the path of crack growth and no region of the domain is necessary to be filled by the cohesive elements. The maximum principal stress criterion is employed for predicting the direction of extension of the cohesive crack in order to implement the cohesive elements. Several numerical examples are analyzed numerically to demonstrate the capability and efficiency of proposed computational algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call