Abstract

AbstractThe distributions of the pulsatile pressure field, the pulsatile velocity field, and the pulsatile resident time of the polymeric melt in the coat‐hanger die are derived by using the pulsation of volumetric flow rate and pressure. Subsequently, formulae of the manifold radius and the slope of the manifold are deduced via volumetric flow rate pulsation. Polypropylene (PP) was employed for the experiments of the vibrational extrusion. The results indicate that the average extrusion pressure declines with frequency or amplitude decreasing; the distribution of residence time along the width of the coat‐hanger die performs uniformly during the vibrational extrusion process; the theoretical extrusion pressure well agrees with the experimental pressure; the experiments of tensile test, impact test implicate that vibration improves the mechanical properties of products; differential scanning calorimetry testing demonstrates that the melting point of PP is moved to a higher temperature value, and the endothermic enthalpy and the crystallinity are improved as well when superimposing the vibrational force field. Accordingly, the model of the coat‐hanger die under vibrational extrusion is well consistent with the experiments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.