Abstract

PurposeThis paper aims to shows the ability of the EDC model with a global reaction mechanism to describe reactions in the Eulerian simulation of a circulating fluidized bed (CFB).Design/methodology/approachThe eddy dissipation concept (EDC) model is embedded in an Eulerian-Eulerian approach to simulate homogeneous reactions.FindingsEDC_G is better than ED_FR in describing chemical reactions. The reaction of CH4 with O2 is faster than that of CO with O2, and NH3 is more liable to be converted than HCN. The combustion rate is higher than the Boudouard reaction rate of coal particles.N2O is mainly reduced by carbon, and NO is mainly converted by carbon into N2 and CO2.Originality/valueThe EDC model with a global reaction mechanism is embedded in a multi-fluid Eulerian approach to simulate the homogeneous reactions in the coal combustion in a CFB, including combustion of volatile gases, desulfurizing reactions and NOx reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.