Abstract

Abstract: The corrosion of reinforcement is one of the major causes of deterioration of reinforced concrete (RC) structures, considerably affecting their durability and reliability. The rate of reinforcement corrosion is governed by, among other factors, the presence of chlorides on the surface of the steel. The assessment of such deteriorating effects necessitates the development of relevant models and the utilization of advanced simulation techniques to enable the probabilistic analysis of concrete structures. In this article an approach for the assessment of the durability and reliability of RC structures under attack from chlorides is introduced. The field of chloride concentration at different locations in the structure (represented in 2D space by chosen longitudinal or cross sections) is modeled as a function of time by a cellular automata (CA) technique. The results of this simulation are then utilized for the assessment of a steel corrosion prognosis using a probabilistic 1D model at chosen points, although the rate of corrosion is based on experimental results. The concentrations of chlorides and pH levels are reflected in this way. The described approach is applied to an illustrative example showing the feasibility of capturing the effect of chloride concentration on the steel corrosion rate and consequently on the assessment of the service life and/or reliability of the structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.