Abstract

A classical electrochemistry problem related to the polarization of a graphene electrode immersed in an aqueous solution and subjected to a small external ac voltage is revisited. The Poisson-Nernst-Planck equations with proper boundary conditions are linearized and normalized, leading to an analytical formula for the impedance of the electrochemical system containing a graphene-metal electrode pair. Electrochemical impedance spectroscopy is utilized to compare the impedance behavior of the graphene-metal electrode pair with the standard metal-metal electrode pair for a range of ion concentrations in the electrolyte. Also studied is the electrochemical capacitive spectroscopy to provide a detailed analysis related to the effects of the quantum capacitance of graphene on the total capacitive properties of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call