Abstract
Monte Carlo simulations of pattern-dependent charging during interlevel dielectric (ILD) deposition in high-density plasmas reveal that the initial conformality of the ILD film plays a crucial role in metal line charging up and the subsequent degradation to the buried gate oxide to which the metal line is connected. Line charging occurs when the top dielectric is thick enough to prevent tunneling currents while the sidewall dielectric thickness still allows tunneling currents to flow to the metal line; the differential charging of the sidewalls, which induces the latter currents, is caused by electron shading. The results suggest that charging can be reduced by depositing a more conformal ILD film around the metal line and/or by increasing the ability of the film surface to dissipate charge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.