Abstract

When two particles with a thin liquid film are colliding toward each other, liquid films merge to form a pendular liquid bridge, which may induce a strong capillary force. The capillary force is determined by the particle size as well as contact parameters, such as liquid volume, contact angles of liquid on each particle, and the separation distance. Upon considering all these impacting factors, a general and explicit capillary force model was established in this study with a minimal energy method by using the software-Surface Evolver. The developed model was validated by comparing results with those obtained through an analytical expression and previous closed-form models. The developed capillary force model is capable of predicting the capillary force between two particles with different diameters and contact angles (≤50°) with an error of less than 15%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.